Example Model ParamsΒΆ
This raw model params file is used in the Quick Start. These
parameters are used to create an
HTMPredictionModel
, which will
create an HTM with specified encoders and connect them to both a
SpatialPooler
and
BacktrackingTM
(or
BacktrackingTMCPP
if
modelParams.tmParams.temporalImp==cpp
).
To see detailed algorithm parameters for the algorithms see their API documentation at:
# Type of model that the rest of these parameters apply to.
model: HTMPrediction
# Version that specifies the format of the config.
version: 1
# The section "aggregationInfo" specifies what field to aggregate with which
# aggregation method.
#
# Example of how to aggregate the field "consumption" with the method "mean"
# and the field "gym" with the method "first". Both field will be
# aggregated over a period of 1h 15m, according to their respective
# aggregation methods.
#
# aggregationInfo:
# fields:
# - [consumption, sum]
# - [gym, first]
# minutes: 15
# hours: 1
#
# See nupic.data.aggregator for more info about supported aggregation methods.
aggregationInfo:
# "fields" should be a list of pairs. Each pair is a field name and an
# aggregation function (e.g. sum). The function will be used to aggregate
# multiple values of this field over the aggregation period.
fields:
- [consumption, mean]
# If a time unit is not listed, 0 will be its default value.
microseconds: 0
milliseconds: 0
minutes: 0
months: 0
seconds: 0
hours: 1
days: 0
weeks: 0
years: 0
predictAheadTime: null
# Parameters of the model to be created.
modelParams:
# The type of inference that this model will perform.
# Supported values are :
# - TemporalNextStep
# - TemporalClassification
# - NontemporalClassification
# - TemporalAnomaly
# - NontemporalAnomaly
# - TemporalMultiStep
# - NontemporalMultiStep
inferenceType: TemporalMultiStep
# Parameters of the Sensor region
sensorParams:
# Sensor diagnostic output verbosity control:
# - verbosity == 0: silent
# - verbosity in [1 .. 6]: increasing level of verbosity
verbosity: 0
# List of encoders and their parameters.
encoders:
consumption:
fieldname: consumption
name: consumption
resolution: 0.88
seed: 1
type: RandomDistributedScalarEncoder
timestamp_timeOfDay:
fieldname: timestamp
name: timestamp_timeOfDay
timeOfDay: [21, 1]
type: DateEncoder
timestamp_weekend:
fieldname: timestamp
name: timestamp_weekend
type: DateEncoder
weekend: 21
# The "sensorAutoReset" specifies the period for automatically generated
# resets from a RecordSensor.
#
# If None, disable automatically generated resets. Also disable for all
# values that evaluate to 0. Example:
# sensorAutoReset: null
#
#
# Valid keys for the "sensorAutoReset" option:
# sensorAutoReset:
# days: <int>
# hours: <int>
# minutes: <int>
# seconds: <int>
# milliseconds: <int>
# microseconds: <int>
# weeks: <int>
#
# Example for an automated reset every 1.5 days:
# sensorAutoReset:
# days: 1
# hours: 12
#
sensorAutoReset: null
# Controls whether the Spatial Pooler (SP) region is enabled.
spEnable: true
# Parameters of the SP region. For detailed descriptions of each
# parameter, see the API docs for
# nupic.algorithms.spatial_pooler.SpatialPooler. Note that the OPF
# will only create one-dimensional input and spatial pooling
# structures, so during SP creation `columnCount` translates to
# `columnDimensions=(columnCount,)` and
# `inputDimensions=(inputWidth,)`.
spParams:
inputWidth: 946
columnCount: 2048
spVerbosity: 0
spatialImp: cpp
globalInhibition: 1
localAreaDensity: -1.0
numActiveColumnsPerInhArea: 40
seed: 1956
potentialPct: 0.85
synPermConnected: 0.1
synPermActiveInc: 0.04
synPermInactiveDec: 0.005
boostStrength: 3.0
# Controls whether the Temporal Memory (TM) region is enabled.
tmEnable: true
# Parameters of the TM region. For detailed descriptions of each
# parameter, see the API docs for
# nupic.algorithms.backtracking_tm.BacktrackingTM.
tmParams:
verbosity: 0
columnCount: 2048
cellsPerColumn: 32
inputWidth: 2048
seed: 1960
temporalImp: cpp
newSynapseCount: 20
initialPerm: 0.21
permanenceInc: 0.1
permanenceDec: 0.1
maxAge: 0
globalDecay: 0.0
maxSynapsesPerSegment: 32
maxSegmentsPerCell: 128
minThreshold: 12
activationThreshold: 16
outputType: normal
pamLength: 1
# Classifier parameters. For detailed descriptions of each parameter, see
# the API docs for nupic.algorithms.sdr_classifier.SDRClassifier.
clParams:
verbosity: 0
regionName: SDRClassifierRegion
alpha: 0.1
steps: '1,5'
maxCategoryCount: 1000
implementation: cpp
# If set, don't create the SP network unless the user requests SP metrics.
trainSPNetOnlyIfRequested: false